3.956 \(\int \frac {x (a+b x^2)^{5/2}}{\sqrt {c+d x^2}} \, dx\)

Optimal. Leaf size=164 \[ -\frac {5 (b c-a d)^3 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^2}}{\sqrt {b} \sqrt {c+d x^2}}\right )}{16 \sqrt {b} d^{7/2}}+\frac {5 \sqrt {a+b x^2} \sqrt {c+d x^2} (b c-a d)^2}{16 d^3}-\frac {5 \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2} (b c-a d)}{24 d^2}+\frac {\left (a+b x^2\right )^{5/2} \sqrt {c+d x^2}}{6 d} \]

[Out]

-5/16*(-a*d+b*c)^3*arctanh(d^(1/2)*(b*x^2+a)^(1/2)/b^(1/2)/(d*x^2+c)^(1/2))/d^(7/2)/b^(1/2)-5/24*(-a*d+b*c)*(b
*x^2+a)^(3/2)*(d*x^2+c)^(1/2)/d^2+1/6*(b*x^2+a)^(5/2)*(d*x^2+c)^(1/2)/d+5/16*(-a*d+b*c)^2*(b*x^2+a)^(1/2)*(d*x
^2+c)^(1/2)/d^3

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 164, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {444, 50, 63, 217, 206} \[ \frac {5 \sqrt {a+b x^2} \sqrt {c+d x^2} (b c-a d)^2}{16 d^3}-\frac {5 \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2} (b c-a d)}{24 d^2}-\frac {5 (b c-a d)^3 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^2}}{\sqrt {b} \sqrt {c+d x^2}}\right )}{16 \sqrt {b} d^{7/2}}+\frac {\left (a+b x^2\right )^{5/2} \sqrt {c+d x^2}}{6 d} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*x^2)^(5/2))/Sqrt[c + d*x^2],x]

[Out]

(5*(b*c - a*d)^2*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(16*d^3) - (5*(b*c - a*d)*(a + b*x^2)^(3/2)*Sqrt[c + d*x^2])
/(24*d^2) + ((a + b*x^2)^(5/2)*Sqrt[c + d*x^2])/(6*d) - (5*(b*c - a*d)^3*ArcTanh[(Sqrt[d]*Sqrt[a + b*x^2])/(Sq
rt[b]*Sqrt[c + d*x^2])])/(16*Sqrt[b]*d^(7/2))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rubi steps

\begin {align*} \int \frac {x \left (a+b x^2\right )^{5/2}}{\sqrt {c+d x^2}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {(a+b x)^{5/2}}{\sqrt {c+d x}} \, dx,x,x^2\right )\\ &=\frac {\left (a+b x^2\right )^{5/2} \sqrt {c+d x^2}}{6 d}-\frac {(5 (b c-a d)) \operatorname {Subst}\left (\int \frac {(a+b x)^{3/2}}{\sqrt {c+d x}} \, dx,x,x^2\right )}{12 d}\\ &=-\frac {5 (b c-a d) \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{24 d^2}+\frac {\left (a+b x^2\right )^{5/2} \sqrt {c+d x^2}}{6 d}+\frac {\left (5 (b c-a d)^2\right ) \operatorname {Subst}\left (\int \frac {\sqrt {a+b x}}{\sqrt {c+d x}} \, dx,x,x^2\right )}{16 d^2}\\ &=\frac {5 (b c-a d)^2 \sqrt {a+b x^2} \sqrt {c+d x^2}}{16 d^3}-\frac {5 (b c-a d) \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{24 d^2}+\frac {\left (a+b x^2\right )^{5/2} \sqrt {c+d x^2}}{6 d}-\frac {\left (5 (b c-a d)^3\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx,x,x^2\right )}{32 d^3}\\ &=\frac {5 (b c-a d)^2 \sqrt {a+b x^2} \sqrt {c+d x^2}}{16 d^3}-\frac {5 (b c-a d) \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{24 d^2}+\frac {\left (a+b x^2\right )^{5/2} \sqrt {c+d x^2}}{6 d}-\frac {\left (5 (b c-a d)^3\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x^2}\right )}{16 b d^3}\\ &=\frac {5 (b c-a d)^2 \sqrt {a+b x^2} \sqrt {c+d x^2}}{16 d^3}-\frac {5 (b c-a d) \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{24 d^2}+\frac {\left (a+b x^2\right )^{5/2} \sqrt {c+d x^2}}{6 d}-\frac {\left (5 (b c-a d)^3\right ) \operatorname {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x^2}}{\sqrt {c+d x^2}}\right )}{16 b d^3}\\ &=\frac {5 (b c-a d)^2 \sqrt {a+b x^2} \sqrt {c+d x^2}}{16 d^3}-\frac {5 (b c-a d) \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{24 d^2}+\frac {\left (a+b x^2\right )^{5/2} \sqrt {c+d x^2}}{6 d}-\frac {5 (b c-a d)^3 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^2}}{\sqrt {b} \sqrt {c+d x^2}}\right )}{16 \sqrt {b} d^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.56, size = 164, normalized size = 1.00 \[ \frac {\sqrt {d} \sqrt {a+b x^2} \left (c+d x^2\right ) \left (33 a^2 d^2+2 a b d \left (13 d x^2-20 c\right )+b^2 \left (15 c^2-10 c d x^2+8 d^2 x^4\right )\right )-\frac {15 (b c-a d)^{7/2} \sqrt {\frac {b \left (c+d x^2\right )}{b c-a d}} \sinh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^2}}{\sqrt {b c-a d}}\right )}{b}}{48 d^{7/2} \sqrt {c+d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*x^2)^(5/2))/Sqrt[c + d*x^2],x]

[Out]

(Sqrt[d]*Sqrt[a + b*x^2]*(c + d*x^2)*(33*a^2*d^2 + 2*a*b*d*(-20*c + 13*d*x^2) + b^2*(15*c^2 - 10*c*d*x^2 + 8*d
^2*x^4)) - (15*(b*c - a*d)^(7/2)*Sqrt[(b*(c + d*x^2))/(b*c - a*d)]*ArcSinh[(Sqrt[d]*Sqrt[a + b*x^2])/Sqrt[b*c
- a*d]])/b)/(48*d^(7/2)*Sqrt[c + d*x^2])

________________________________________________________________________________________

fricas [A]  time = 0.71, size = 440, normalized size = 2.68 \[ \left [-\frac {15 \, {\left (b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} \sqrt {b d} \log \left (8 \, b^{2} d^{2} x^{4} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x^{2} + 4 \, {\left (2 \, b d x^{2} + b c + a d\right )} \sqrt {b x^{2} + a} \sqrt {d x^{2} + c} \sqrt {b d}\right ) - 4 \, {\left (8 \, b^{3} d^{3} x^{4} + 15 \, b^{3} c^{2} d - 40 \, a b^{2} c d^{2} + 33 \, a^{2} b d^{3} - 2 \, {\left (5 \, b^{3} c d^{2} - 13 \, a b^{2} d^{3}\right )} x^{2}\right )} \sqrt {b x^{2} + a} \sqrt {d x^{2} + c}}{192 \, b d^{4}}, \frac {15 \, {\left (b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} \sqrt {-b d} \arctan \left (\frac {{\left (2 \, b d x^{2} + b c + a d\right )} \sqrt {b x^{2} + a} \sqrt {d x^{2} + c} \sqrt {-b d}}{2 \, {\left (b^{2} d^{2} x^{4} + a b c d + {\left (b^{2} c d + a b d^{2}\right )} x^{2}\right )}}\right ) + 2 \, {\left (8 \, b^{3} d^{3} x^{4} + 15 \, b^{3} c^{2} d - 40 \, a b^{2} c d^{2} + 33 \, a^{2} b d^{3} - 2 \, {\left (5 \, b^{3} c d^{2} - 13 \, a b^{2} d^{3}\right )} x^{2}\right )} \sqrt {b x^{2} + a} \sqrt {d x^{2} + c}}{96 \, b d^{4}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x^2+a)^(5/2)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[-1/192*(15*(b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 - a^3*d^3)*sqrt(b*d)*log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b*
c*d + a^2*d^2 + 8*(b^2*c*d + a*b*d^2)*x^2 + 4*(2*b*d*x^2 + b*c + a*d)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(b*d
)) - 4*(8*b^3*d^3*x^4 + 15*b^3*c^2*d - 40*a*b^2*c*d^2 + 33*a^2*b*d^3 - 2*(5*b^3*c*d^2 - 13*a*b^2*d^3)*x^2)*sqr
t(b*x^2 + a)*sqrt(d*x^2 + c))/(b*d^4), 1/96*(15*(b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 - a^3*d^3)*sqrt(-b*d)
*arctan(1/2*(2*b*d*x^2 + b*c + a*d)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(-b*d)/(b^2*d^2*x^4 + a*b*c*d + (b^2*c
*d + a*b*d^2)*x^2)) + 2*(8*b^3*d^3*x^4 + 15*b^3*c^2*d - 40*a*b^2*c*d^2 + 33*a^2*b*d^3 - 2*(5*b^3*c*d^2 - 13*a*
b^2*d^3)*x^2)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c))/(b*d^4)]

________________________________________________________________________________________

giac [A]  time = 0.50, size = 210, normalized size = 1.28 \[ \frac {{\left (\sqrt {b^{2} c + {\left (b x^{2} + a\right )} b d - a b d} \sqrt {b x^{2} + a} {\left (2 \, {\left (b x^{2} + a\right )} {\left (\frac {4 \, {\left (b x^{2} + a\right )}}{b d} - \frac {5 \, {\left (b c d^{3} - a d^{4}\right )}}{b d^{5}}\right )} + \frac {15 \, {\left (b^{2} c^{2} d^{2} - 2 \, a b c d^{3} + a^{2} d^{4}\right )}}{b d^{5}}\right )} + \frac {15 \, {\left (b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} \log \left ({\left | -\sqrt {b x^{2} + a} \sqrt {b d} + \sqrt {b^{2} c + {\left (b x^{2} + a\right )} b d - a b d} \right |}\right )}{\sqrt {b d} d^{3}}\right )} b}{48 \, {\left | b \right |}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x^2+a)^(5/2)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

1/48*(sqrt(b^2*c + (b*x^2 + a)*b*d - a*b*d)*sqrt(b*x^2 + a)*(2*(b*x^2 + a)*(4*(b*x^2 + a)/(b*d) - 5*(b*c*d^3 -
 a*d^4)/(b*d^5)) + 15*(b^2*c^2*d^2 - 2*a*b*c*d^3 + a^2*d^4)/(b*d^5)) + 15*(b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2*b*c
*d^2 - a^3*d^3)*log(abs(-sqrt(b*x^2 + a)*sqrt(b*d) + sqrt(b^2*c + (b*x^2 + a)*b*d - a*b*d)))/(sqrt(b*d)*d^3))*
b/abs(b)

________________________________________________________________________________________

maple [B]  time = 0.02, size = 529, normalized size = 3.23 \[ \frac {\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}\, \left (16 \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}\, b^{2} d^{2} x^{4}+15 a^{3} d^{3} \ln \left (\frac {2 b d \,x^{2}+a d +b c +2 \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}}{2 \sqrt {b d}}\right )-45 a^{2} b c \,d^{2} \ln \left (\frac {2 b d \,x^{2}+a d +b c +2 \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}}{2 \sqrt {b d}}\right )+45 a \,b^{2} c^{2} d \ln \left (\frac {2 b d \,x^{2}+a d +b c +2 \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}}{2 \sqrt {b d}}\right )-15 b^{3} c^{3} \ln \left (\frac {2 b d \,x^{2}+a d +b c +2 \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}}{2 \sqrt {b d}}\right )+52 \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}\, a b \,d^{2} x^{2}-20 \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}\, b^{2} c d \,x^{2}+66 \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}\, a^{2} d^{2}-80 \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}\, a b c d +30 \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}\, b^{2} c^{2}\right )}{96 \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}\, d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(b*x^2+a)^(5/2)/(d*x^2+c)^(1/2),x)

[Out]

1/96*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)*(16*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)*b^2*d^2*x^4+52*(b*d*x
^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)*a*b*d^2*x^2-20*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)*b^2*c
*d*x^2+15*a^3*d^3*ln(1/2*(2*b*d*x^2+a*d+b*c+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2))/(b*d)^(1/2))-45
*a^2*b*c*d^2*ln(1/2*(2*b*d*x^2+a*d+b*c+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2))/(b*d)^(1/2))+45*a*b^
2*c^2*d*ln(1/2*(2*b*d*x^2+a*d+b*c+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2))/(b*d)^(1/2))-15*b^3*c^3*l
n(1/2*(2*b*d*x^2+a*d+b*c+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2))/(b*d)^(1/2))+66*(b*d*x^4+a*d*x^2+b
*c*x^2+a*c)^(1/2)*(b*d)^(1/2)*a^2*d^2-80*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)*a*b*c*d+30*(b*d*x^4+a
*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)*b^2*c^2)/d^3/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)/(b*d)^(1/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x^2+a)^(5/2)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c zero or nonzero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x\,{\left (b\,x^2+a\right )}^{5/2}}{\sqrt {d\,x^2+c}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*x^2)^(5/2))/(c + d*x^2)^(1/2),x)

[Out]

int((x*(a + b*x^2)^(5/2))/(c + d*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \left (a + b x^{2}\right )^{\frac {5}{2}}}{\sqrt {c + d x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x**2+a)**(5/2)/(d*x**2+c)**(1/2),x)

[Out]

Integral(x*(a + b*x**2)**(5/2)/sqrt(c + d*x**2), x)

________________________________________________________________________________________